Proceedings of Board of Studies in Statistics Held on 11-07-2018 at 12 Noon
At C.S.J.M University, Kanpur

UNDERGRADUATE

In Principle Board proposes the following changes in the circulated syllabus of U.G Classes in Statistics to make it more relevant:

1. The syllabus of B. A-I and B. A-II consist of two papers each. Board feels that there may be three papers of 25 marks with three hours duration in each class. The syllabus may be common to that of B. Sc. - I and B. Sc. - II respectively. The Practical will be of 25 marks and three hour duration in each year. As per the previous Board of Studies meeting held on 12-07-2011 it was resolved and hence should be strictly adhered to. (Proceedings of previous Board of Studies is attached as Annexure 1)

2. This Board of Studies strongly recommends that the other proceedings approved for the previous Board of Studies held on 12-07-2011 (point 2-6) should also be strictly adhered to. (Kindly refer to Annexure 1).

3. The following modifications are proposed for circulated syllabus of U.G Classes in Statistics (B.A./ B. Sc.) to make it more relevant:

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Class</th>
<th>Paper</th>
<th>Unit</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B. A./B.Sc.-I</td>
<td>III</td>
<td>III</td>
<td>Content “Kendall’s Measure” and “Correlation Ratio” may be deleted.</td>
</tr>
<tr>
<td>2</td>
<td>B. A./B.Sc.-II</td>
<td>I</td>
<td>IV</td>
<td>Content “Likelihood ratio tests and their reduction to standard tests” may be deleted.</td>
</tr>
<tr>
<td>3</td>
<td>B. A./B.Sc.-II</td>
<td>II</td>
<td>IV</td>
<td>Content “Double sampling in ratio method of estimation. Two-stage sampling with equal first stage units : estimator of population mean and its variance ” may be deleted. Content “Systematic sampling: estimation of population mean and population total, standard errors of these estimators” (from Unit II) and</td>
</tr>
</tbody>
</table>

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A-V. College, Kanpur
<table>
<thead>
<tr>
<th>Unit</th>
<th>Course</th>
<th>Semester</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B. A./B.Sc.-II</td>
<td>II</td>
<td>“Cluster sampling with equal clusters” (from Unit III) may be shifted to Unit IV to make all the units more balanced.</td>
</tr>
<tr>
<td>5</td>
<td>B. A./B.Sc.-II</td>
<td>II</td>
<td>Content “Systematic sampling: estimation of population mean and population total, standard errors of these estimators” may be shifted to Unit IV.</td>
</tr>
<tr>
<td>6</td>
<td>B. A./B.Sc.-II</td>
<td>III</td>
<td>Content “Cluster sampling with equal clusters” may be shifted to Unit IV.</td>
</tr>
<tr>
<td>7</td>
<td>B. A./B.Sc.-III</td>
<td>I</td>
<td>Content “2^2 factorial experiments arranged in RBD and LSD” may be deleted and content “2^2, 2^3 factorial experiments arranged in LSD” may be deleted and only “2^2, 2^3 factorial experiments arranged in RBD” may be retained.</td>
</tr>
<tr>
<td>8</td>
<td>B. A./B.Sc.-III</td>
<td>I</td>
<td>Content “Maximum likelihood estimation of mean vector and covariance matrix, independence and joint sufficiency of these estimates” may be deleted.</td>
</tr>
<tr>
<td>9</td>
<td>B. A./B.Sc.-III</td>
<td>I</td>
<td>Content “Confidence interval of quantiles of order p” may be deleted.</td>
</tr>
<tr>
<td>10</td>
<td>B. A./B.Sc.-III</td>
<td>I</td>
<td>Content “Mood tests and Sukhatme test for scale parameter” may be deleted.</td>
</tr>
</tbody>
</table>

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A.V. College, Kanpur
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>B. A./B.Sc.-III</td>
<td>II</td>
<td>I</td>
<td>Content “Idea of Correlogram & periodogram” may be deleted.</td>
</tr>
<tr>
<td>12</td>
<td>B. A./B.Sc.-III</td>
<td>III</td>
<td>II</td>
<td>Content “M/G/1 Queueing system, cost-profit models in queueing theory” may be deleted.</td>
</tr>
<tr>
<td>13</td>
<td>B. A./B.Sc.-III</td>
<td>III</td>
<td>III</td>
<td>Content “Project Management: PERT/CPM determination of floats construction of time chart and resources labelling” may be deleted. Board feels the need to add “Games & Strategies: Introduction, Basic Terms, Dominance Property, Two-Person Zero Sum Games, Maximin-Minimax Principle, 2 x 2 Two-Person Zero Sum Games Without Saddle Point-Mixed Strategies, Graphic Solution of 2 x n and m x 2 games” and shift “PERT/CPM” to Network analysis section in the same unit.</td>
</tr>
<tr>
<td>14</td>
<td>B. A./B.Sc.-III</td>
<td>III</td>
<td>IV</td>
<td>Content “Dynamic Programming: Bellman’s optimality principle. Applications.” may be deleted.</td>
</tr>
</tbody>
</table>

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A.V. College, Kanpur
Unified Syllabus of Statistics

<table>
<thead>
<tr>
<th>Course</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Part- I & Part - II</td>
<td>There will be three theory papers each of three hours duration and of 50 marks. Practical will be of 50 marks & three hour duration.</td>
</tr>
<tr>
<td>B.A. Part- I & Part - II</td>
<td>There shall be three theory papers each of three hours duration and of 25 marks. Practical will be of 25 marks & three hour duration.</td>
</tr>
<tr>
<td>B.Sc. Part-III</td>
<td>There will be three theory papers each of three hours duration and 75 marks. Practical would be of 75 marks & three hour duration.</td>
</tr>
<tr>
<td>B.A Part - III</td>
<td>There will be three theory papers each of three hour duration & 35 marks. Practical would be of 45 marks & three hour duration.</td>
</tr>
</tbody>
</table>

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A-V. College, Kanpur
UNIFIED SYLLABUS OF STATISTICS
B. A./B.Sc. Part-I

Paper-I: Probability

UNIT – I

Random experiment, trial, sample point and sample space, events, operations of events, concepts of equally likely, mutually exclusive and exhaustive events.

Definition of probability: Classical, relative frequency and axiomatic approaches. Discrete probability space, properties of probability under set theoretic approach. Independence of events, Conditional probability, total and compound probability theorems, Bayes theorem and its applications.

UNIT – II

Random variables – discrete and continuous, probability mass function (pmf) and probability density function (pdf), Cumulative distribution function (cdf). Joint distribution of two random variables, marginal and conditional distributions.

UNIT – III

Independence of random variables. Expectation of a random variable (rv) and its properties,, expectation of sum of random variables and product of independent random variables, conditional expectation and related problems.

UNIT – IV

Moments, moment generating function (m.g.f.) & their properties, continuity theorem for m.g.f. (without proof), Chebyshev's inequality. Weak law of large numbers and Central Limit Theorem for a sequence of independently and identically distributed random variables and their applications.

REFERENCE:

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A-V. College, Kanpur
UNIFIED SYLLABUS OF STATISTICS
B. A./B.Sc. Part-I

Paper-II: Probability distributions and Numerical Analysis

UNIT - I

UNIT - II
Distributions of function of random variables: Distribution of sum, product and quotient of two Variable. Reproductive property of standard distributions. χ²(chi-square), t and F distributions (Central cases only) and their limiting forms. Bivariate normal distribution and its properties.

UNIT - III
Calculus of finite differences. operators, separation of symbols, examples and problems. Interpolation formulas with remainder term. Newton's forward and backward formulae. Central difference formulae, Newton's divided difference formulae for interpolation. Lagrange's interpolation formulae

UNIT - IV

REFERENCES
3. Freeman: Finite Differences.
7. Saxena, H.C: Calculus of Finite Differences (S. Chand & Co.).

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A-V. College, Kanpur
Paper III: Statistical Methods

UNIT-I
Concept of statistical population, Attributes and variables (discrete and Continuous). Different types of scales – nominal, ordinal, ratio and interval. Primary data – designing a questionnaire and schedule, collection of primary data, checking their consistency. Secondary data. scrutiny of data for internal consistency and detection of errors of recording. Presentation of data: classification, tabulation, diagrammatic & graphical representation of grouped data. Frequency distributions, cumulative frequency distributions and their graphical representations, histogram, frequency polygon and ogives. Stem and Leaf plot. Box Plot.

UNIT-II

UNIT-III
Correlation and regression, rank Correlation (Spearman’s measure), Intra-class correlation. Partial and Multiple Correlation & Multiple Regression for Tri-variate data.

UNIT-IV
Attributes- Notion and terminology, contingency table, class frequencies, and ultimate class frequencies, consistency. Association of attributes, Independence, Measure of association for 2x2 table. Chi-square, Karl Pearson’s and Tschuprow’s coefficient of association. Contingency tables with ordered categories.

REFERENCES:
PRACTICAL

The practical examination will be based on papers I, II & III and will cover the following experiments.

List of Practical Experiments

1. Graphical representation of data by Histogram, Frequency polygons, frequency curves and Ogives. Stem and Leaf Plot, Box Plot.
2. Calculation of measures of location.
3. Calculation of measures of dispersion.
4. Calculation of moments, measures of skewness and measures of Kurtosis.
5. Fitting of curves by method of least squares.
6. Determination of regression lines and calculation of correlation coefficient – grouped and ungrouped data.
7. Calculation of multiple and partial correlation coefficients for three variables
8. Calculation of measures of association in contingency tables.
9. Construction of forward difference tables and divided difference tables.
10. Interpolation by Newton’s forward difference formula for equal intervals and calculation of error.
11. Interpolation by Newton’s divided difference formula for unequal intervals.
12. Interpolation by Lagrange’s formula for unequal intervals.
13. Approximate integration (Trapezoidal rule, Simpson’s one-third rules, Simpson’s three-eighth rule), Weddle’s rule.

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A.V. Colle., e. Kanpur
UNIFIED SYLLABUS OF STATISTICS
B.A./B.Sc. Part-II

Paper I: Statistical Inference

UNIT – I

UNIT – II
Sufficient Statistics, Cramer-Rao inequality and its use in finding MVU estimators. Statistical Hypothesis (simple and composite). Testing of hypothesis. Type I and Type II errors, significance level, p-values, power of a test. Definitions of Most Powerful (MP), Uniformly Most Powerful (UMP) and Uniformly Most Powerful Unbiased (UMPU) tests.

UNIT – III
Neyman-Pearson’s lemma and its applications for finding most powerful tests for simple hypothesis against simple alternative. Tests based on t, F and χ^2 distributions.

UNIT-IV
Large sample tests. Interval estimation, Pivotal quantity and its use in finding confidence intervals, concept of best confidence intervals.

REFERENCE
Paper II: Survey Sampling

UNIT-I

UNIT-II
Stratified random sampling. Problem of allocation, proportional allocation, optimum allocation. Derivation of the expressions for the standard errors of the usual estimators when these allocations are used. Gain in precision due to stratification. Role of sampling cost in the sample allocation. Minimization of variance for fixed cost.

UNIT-III
Regression method of estimation in simple random sampling: Estimators of population mean, their bias and mean square error. Ratio methods of estimation in simple random sampling: Estimators of population mean, their bias and mean square error. Comparison of Regression estimator and Ratio estimator.

UNIT-IV
Systematic sampling: estimation of population mean and population total, standard errors of these estimators. Cluster sampling with equal clusters. Estimators of population mean and their mean square error. Non-sampling errors.

REFERENCES

Dr. K. K. Tiwari
Convener & Head
Dept. of Statistics
D.A.-V. College, Kanpur
UNIFIED SYLLABUS OF STATISTICS

B. A./ B.Sc. Part- II

Paper III : Analysis of Variance and Design of Experiments.

UNIT-I
Analysis of Variance. One way classification. Assumptions regarding model. Two way classification with equal number of observations per cell. Duncan’s multiple comparison test. Analysis of covariance.

UNIT-II
Principles of Design of experiments: Randomization, Replication and local control. Choice of size and type of a plot using uniformity trials. CRD, Randomized block design. Concept and definition of efficiency of design. Comparison of efficiency between CRD and RBD.

UNIT-III
Latin square Design, Lay-out, ANOVA table. Comparison of efficiencies between LSD and RBD; LSD and CRD. Missing plot technique: estimation of missing plots by minimizing error sum of squares in RBD and LSD with one or two missing observations.

UNIT-IV
Factorial Experiments : general description of factorial experiments; 2^2 and 2^3 experiments arranged in RBD. Definition of main effects and interactions in 2^2 and 2^3 factorial experiments. Preparation of ANOVA by Yates procedure. Estimates and tests for main and interaction effects (Analysis without confounding).

REFERENCES
1. Cochran and Cox : Experimental Design
2. Kempthorne : Design of Experiments
3. Federer : Experimental Designs
5. Das & Giri : Design and Analysis of Experiments (Wiley Eastern).
B. A./B.Sc. Part- II

PRACTICAL
The practical examination will be based on papers I, II and III and will cover the following experiments:

List of Practical Experiments:
1. Fitting of Binominal, Poisson and Normal distributions to observed data and testing of goodness of fit.
2. Testing of independence of attributes in \(m \times n \) contingency table and calculation of measures of association.
3. \(t \) - test for (i) \(\mu = \mu_0 \) (ii) \(\mu_1 = \mu_2 \) (iii) \(\alpha = \alpha_0 \) (iv) \(\beta = \beta_0 \) (v) \(\rho = 0 \)
4. F-test for \(\sigma_1^2 = \sigma_2^2 \)
5. Fisher's Z-transformation and its use in testing (i) \(\rho_1 = \rho_2 \) (ii) \(\rho = \rho_0 \)
6. Calculation of power curve for the test of \(\mu = \mu_0 \) against \(\mu \neq \mu_0 \) for a normal distribution with known variance.
7. Large sample tests.
8. Analysis of variance in one-way and two-way classification (with and without interaction terms).
10. Analysis of variance in RBD and LS design with one or two missing observations.
11. Drawing a simple random sample with the help of table of random numbers.
13. Stratified random sampling for population mean (proportional and optimum allocation).
15. Factorial Experiment Practical.

[Signature]
Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A.V. College, Kanpur

[Signature]
K. H. Tiwari
UNIFIED SYLLABUS OF STATISTICS
B.A. & B.Sc. Part- III

Paper I: Non-parametric Methods and Regression Analysis

UNIT – I
Multivariate normal distributions, marginal and conditional distribution, Moment Generating and Characteristics function. Distribution of linear combination of components of multi normal variate.

UNIT – II
Order Statistics. Distributions of minimum, rth and maximum order statistic. Joint distribution of rth and sth order statistics (in continuous case) Distribution of sample range & sample median, for uniform and exponential distributions.

UNIT – III

UNIT – IV
Linear regression model of full rank, Least squares theory. Estimation of parameters-OLSE. R^2 and adjusted R^2. ANOVA table for regression,

REFERENCE :
2. Gibbons, J.D. : Non-parametric statistical inference
5. Johnston : Econometric Methods
6. Anderson : Introduction to Multivariate Statistical Analysis, Chapters 1,2 & 3

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A-V. College, Kanpur
Paper II: Applied Statistics

UNIT – I

Time series, its different components, illustrations, additive and multiplicative models, determination of trend, growth curves, analysis of seasonal fluctuations, construction of seasonal indices.

Index number – its definition, application of index number, price relative and quantity or volume relatives, link and chain relative, problem involved in computation of index number, use of averages, simple aggregative and weighted average method. Laspeyre’s, Paashe’s and Fisher’s index number, time and factor reversal tests of index numbers, consumer price index

UNIT – II

Educational Statistics: Scaling procedures – scaling of test items, test scores, rating of qualitative answers and judgments. Test theory, linear models, parallel tests, true score, reliability and validity of tests. Tetra-choric, bi-serial and point bi-serial correlation coefficients.

UNIT – III

UNIT – IV

Control charts for variables and attributes, modified control charts, group control charts, CUSUM charts, V mask. Sampling inspection by attributes – single and double sampling plans. Producer’s and consumer’s risk, OC, ASN, ATI functions AOQL and LTPD of sampling plans. Sampling inspection by variables – simple cases.

REFERENCE:
2. Draper & Smith : Applied Regression Analysis
4. Wetherill and Brown : Statistical Quality Control
Paper III: Operations Research

UNIT – I

UNIT – II

Replacement problems (individual and group). Queueing Models – M/M/1, M/M/C models waiting time distribution for M/M/1, Little’s formulae.

UNIT – III

Network Analysis: Minimal Spanning Tree, Model Shortest-route problems, Maximal Flow Model, PERT/CPM

Games & Strategies: Introduction, Basic Terms, Dominance Property, Two-Person Zero Sum Games, Maximin-Minimax Principle, 2 x 2 Two-Person Zero Sum Games Without Saddle Point-Mixed Strategies, Graphic Solution of 2 x n and m x 2 games

UNIT – IV

Inventory Models : FOQ models, Non-zero, land time, EOQ with shortages allowed.

REFERENCES:
PRACTICAL

The practical examination will be based on papers I, II and III and will cover the following experiments:

List of Practical Experiments

1. Non-Parametric Testing-
 i. Test for randomness, test for goodness of fit,
 ii. One sample tests: sign test, Wilcoxon signed rank tests.
 iii. Two sample tests: run test, Kolmogorov – Smirnov’s test, Mann-Whitney U test.
2. Control Charts
 i. X-bar, R chart
 ii. C-chart
 iii. P-chart
 iv. Np-chart
3. Analysis of Time Series
 1. Estimation of Trend using Moving Average Method
 2. Computation of Seasonal Indices using Link Relative Method, Ratio to Trend Method, Ratio to Moving Average Method
4. Index Numbers
 i. Computation of Fisher’s, Marshall-Edgeworth, Laspeyre’s and Passche’s Indices
3. Solution of LPP-Graphical Method, Simplex Method and Big-M Method
4. Solution of Assignment Problem
5. Solution of Transportation Problem-
 i. Computing initial basic feasible solution using NWCM, LCM and VAM and
 ii. Computing the optimum solution using U-V method
6. Replacement Problems
7. Problems based on Game Theory
8. Vital Statistics
 i. Measurement of mortality, crude death rates, age specific death rates, infant mortality rates, death rate by cause.
 ii. Measurement of fertility – crude birth rate, general fertility rate, age-specific birth rate, total fertility rate, gross reproduction rate, net reproduction rate, standardized death rates,
 iii. Complete life table, its main features and construction

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A.V. College, Kanpur
ANNEXURE 1

Proceeding of Board of Studies in Statistics Held on 12.7.11 At 12 Noon At
C.S.J.M University Kanpur

In Principle Board agrees with the circulated syllabus of U.G Classes in statistics.
However following observations would make it more relevant.

1. Contents in B.A II / B.Sc -II paper – II entitled “Survey sampling “ Seem to be lengthy. The following topic of the paper may be deleted: Double sampling in ratio method of estimation. Two stage sampling with equal first stage unit, Estimator of population mean and variance, Non sampling error.

2. The syllabus of B. A – I and B. A- II consists of two papers each. Board feels that there may be three papers in each class.

3. B.A/ B.Sc syllabus may be common for all the papers in each year.

4. To maintain the uniformity in all respect, Board feels that infrastructure should also be the same in all state universities and degree colleges. All degree department should have faculty of at least three persons

5. All the Departments should have the sufficient computer systems to replace the old one (the calculators) for the Pratical Purpose.

6. There may be optional papers of computer programming with “FORTRAN”

Dr. R. B. Tiwari
Convener & Head
Dept. of Statistics
D.A-V. College, Kanpur